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Abstract

The conventional transmission planning tends to focus exclusively on efficiency

benefit, allowing cheaper remote generation to have priority dispatch over expen-

sive local generation (least cost approach). Because of this nowadays deregulated

markets face the problem that their systems affect the competitiveness of players,

giving room for players to exercise market power.

The purpose of this study is to develop a mathematical model that quantifies

the generation cost and reduces market power, by minimizing the social cost and

restraining producers from withholding generation capacity. To do this, deter-

ministic optimal transmission switching is proposed, together with a Worst-Nash

Equilibrium (WNE) optimization, to quantify the social cost.

This study considers the transmission switch formulation based on the DC

Optimal Power Flow (DCOPF) presented by Schmuel S. Oren as a Mixed-Integer

linear Program (MIP). This formulation employs binary variables to represent

the state of the transmission line. The effects of transmission switching with

contingency analysis are also considered in the DCOPF formulation.

To include market power cost reduction in our problem, the social cost of

the system is modeled considering WNE, which maximizes the social cost using

linearization. The formulation includes strategic generators that might choose
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to withhold some of their output and non-strategic generators. This under the

condition that the profit of a portfolio with a strategic generator under Nash

Equilibrium is always greater than the profit of a portfolio where the offers are

constant.

A 14-node example system is studied where the efficiency benefits and com-

petition benefits of transmission capacity by optimal transmission switching are

considered. The results demonstrate that the utilization of the proposed method

increase economic benefit and improves competitiveness in the electricity market.
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Nomenclature

Indices

u generator unit

l transmission line

i node of the network

n,m nodes between line l

k maximum generation capacity

p portfolio

s strategy

c contingency

Sets

U set of units in the system

L set of transmission lines in the system

N set of nodes in the system

K set of constants

O set of portfolios in the system

S set of strategies
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Model parameters

cu cost

F minimum transmission capacity

F maximum transmission capacity

g maximum generation capacity

d demand

B admitance

nc operation status of the line during contingency, 0 the line is contingency

(disconnected)and 1 otherwise

M arbitrary big number

C incidence matrix

Optimization model variables

SC social cost

F power flow in the transmission line

g generation of each unit

ĝ maximum capacity offer to the market

nl operation status of the line, 0 the line is disconnected and 1 otherwise

πp profit of portfolio, under Nash equilibrium

πp,sp profit of portfolio, without Nash equilibrium

θ voltage angle of node i

P local marginal price at node i

x behavior status of the generating unit, 0 for strategic units

and 1 for the non-strategic units
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w action of generating unit u, related to the capacity offer to the market

q quantity produce of an identical product

L Lagrangian optimization function

Slackness variables

ρi Slackness variable for the energy balance constraint

λdown
l Slackness variable for the lower limit of the power flow constraint

λupl Slackness variable for the upper limit of the power flow constraint

µdown
u Slackness variable for the lower limit of the generation limit constraint

µup
u Slackness variable for the upper limit of the generation limit constraint

βdown
l Slackness variable for the lower limit of the Kirchhoff’s law constraint

βup
l Slackness variable for the upper limit of the Kirchhoff’s law constraint

δi Contingency slackness variable for the energy balance constraint

αdown
l Contingency slackness variable for the lower limit of the power flow constraint

αup
l Contingency slackness variable for the upper limit of the power flow constraint

εdown
l Contingency slackness variable for the lower limit of the Kirchhoff’s law constraint

εupl Contingency slackness variable for the upper limit of the Kirchhoff’s law constraint

Binary variables for Complementary conditions

blow−λl Binary variable for the lower limit of the power flow constraint

bup−λl Binary variable for the upper limit of the power flow constraint

blow−µl Binary variable for the lower limit of the generation limit constraint

bup−µl Binary variable for the upper limit of the generation limit constraint

blow−βl Binary variable for the lower limit of the Kirchhoff’s law constraint
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bup−βl Binary variable for the upper limit of the Kirchhoff’s law constraint

blow−αl Contingency binary variable for the lower limit of the power flow constraint

bup−αl Contingency binary variable for the upper limit of the power flow constraint

blow−εl Contingency binary variable for the lower limit of the Kirchhoff’s law constraint

bup−εl Contingency binary variable for the upper limit of the Kirchhoff’s law constraint

Outputs

F power flow in the transmission line

g generation of each unit

ĝ maximum capacity offer to the market

nl operation status of the line, 0 the line is disconnected and 1 otherwise
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Chapter 1

Introduction

1.1 Background

The early electricity industry was designed as vertical integration; where genera-

tion, transmission and distribution created a ”natural monopoly”. This vertical-

integrated market led to a lack of incentives to improve the system and reduce

generation and distribution costs.

Over the last two decades industry analysts, regulators and policy makers have

focused on an economically more efficient system. In December 1996 most of the

European electricity markets had changed their policies to achieve a liberalized

market, by allowing operating firms to compete freely in the energy market and

prevent producers to no longer own the transmission and distribution network [4].

Liberalization decouples generation and transmission sectors; aiming to increase

the efficiency, reduce electricity prices and create a more competitive market.

Electricity as a commodity presents special characteristics that must be consid-

ered: production must always meet the demand in a short period of time; demand

is varying every second; and storage is very limited and expensive [5]. These

considerations combined with an inelastic demand, transmission constrains and



1.1. BACKGROUND 6

market fragmentation are incentives for producers to abuse the market equilib-

rium and alter the electricity price to increase their own profit. This ability of

abusing market equilibrium is known as market power.

Market power is one of the main concerns of the deregulated markets nowadays;

before liberalization vertical market power was exercised [2], now there is no more

concern for that. Instead horizontal market power is a potential problem [6]; when

suppliers collude with other suppliers in the market to gain the ability of altering

the electricity price.

Evidence of horizontal market power abuse has been observed in several oper-

ating electricity markets, where the market price has increased up to 22% above

competitive level [7]. Perfect competition price can be set as a benchmark to

evaluate market power abuse, different indicators have been studied to quantify

market power and its association with cost [8],[1].

There are different forms of market power that can be present; market dom-

inance or local market power (due to transmission congestion). Scholars have

studied transmission congestion in the past to recognize the presence of market

power in the system [9]. Market dominance concerns strategic producers that are

large enough to affect the price and maximize their profit. Strategies as Physi-

cal Withholding and Economical Withholding (bids) are implemented to alter the

electricity price through horizontal mergers or by collusion. Strategic investment

policies can also be implemented to maintain market dominance or increase profit

[10].

Physical Withholding or Quantity Withholding occurs when a supplier inten-

tionally decides to offer less generation capacity to the market than its maximum

production capacity. Setting market price as the intersection between supply and
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demand curves [5], the quantity withheld (∆Qw) makes the supply curve shift to

the left and a higher new price is set, increasing it from P ∗ to P e as in figure

(1.1).[1]

Figure 1.1: Withholding strategy and price-quantity outcome [1].

The main consequence of market power exercise is an increase of the genera-

tion cost (consequently electricity price) to a higher value than the marginal cost,

usually referred to as Market Power Cost [8]. This means an increase of profit

for producers and a lower efficiency in the market. The efficiency in the market

is measured by its Social Welfare, the summation of producer’s surplus and con-

sumer’s surplus [2]. The total surplus of the system is the total generation cost

minus the variable cost of production. In a perfect competition market, the total

surplus reaches its maximum and is considered to be an efficient market. In the

case of market power, the social welfare reduces which indicates a lower efficiency.

In figure 1.2 an example where in perfect competition the producer generation is
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60TWh and its surplus is 6000MSEK, under market power the generating unit can

offer less capacity (example 40TWh) until it reaches the maximum surplus of the

producer (7000MSEK).

Figure 1.2: Withholding strategy and producers surplus variation [2].

This leads to another important consequence of market power exercise, which

is the transfer of wealth from consumers to producers, as shown in figure 1.3. This

transfer of wealth under market power directly affects consumers.

In general, perfect competition is assumed in a liberalized market, where no

market power is exercised and suppliers bid according to their marginal cost. Nev-

ertheless, in reality, considering the special characteristics of electricity, it is im-

practical to rely on this assumption. Therefore market power should be considered

in the liberalized market and its regulation is of extreme importance to increase

efficiency and minimize Social Cost.
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Figure 1.3: Transfer of wealth by the exercise of market power [1].

Traditionally, transmission switching analysis is not considered as an economic

optimization; most of the studies were based only on system reliability criteria

without any economic market analysis, where transmission elements were treated

as non-dispatchable elements. Currently there is an agreement to develop a smarter

electrical grid which is stronger, more flexible, more efficient and better to control.

Optimal transmission switching has proven to be a reliable method of incorporating

more controllability to the grid [11], and also creating economic benefit comparing

to other methods such as generation unit rescheduling or load shedding [12]. Op-

timal transmission switching has been complemented with other co-optimizations

ancillary services, generation topology and optimal unit commitment scheduling

to improve economic efficiency under perfect competition assumption [11],[13].

Under the same assumption in a liberalized electricity market, effective opti-

mal transmission switching has recently proved to be an important tool to improve
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overall market efficiency and reduce Social Cost [11], [14], [15] considering contin-

gency constraints to prove the system remains stable and robust [16].

Previously market power strategic behavior for economical withholding has

being model using Nash-Cournot concepts [17], and physical withholding has being

reduce according to demand flexibility [18].

The increase of Social Welfare due to disconnection of a small number of lines in

the system has been reported in [19]. Author of [19] suggests that by co-optimizing

topology and a simple variation of the network by Transmission System Operators

(TSO), market power can be reduced. An impact in market power regulation

by transmission augmentation and additional transmission capacity has presented

evidence of market power cost by regulating strategic behaviour [20],[21].

In the current electricity market structure, it is important to aim for a more

efficient network, a smarter grid that can be more controllable [22]. A fair equi-

librium for producers and consumers where there is no transfer of wealth must be

procured.

The starting point of this thesis is the work carried out by [14] and [16] to formu-

late a transmission switching optimization problem to reduce Social Cost, and the

work presented by [23] to include Extreme Nash-Equilibria concepts to model the

strategic behavior of generating units (Market Power), where linearization tech-

niques are implemented to formulate the problem as a single-stage mixed-integer

linear program problem.

This thesis proposes an optimal transmission switching model to minimize Mar-

ket Power Cost and therefore increase the competition and efficiency in the elec-

tricity market and reduce cost for society.
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1.2 Problem Definition

Perfect competition has been a widely accepted assumption in electricity market

studies. However if it is considered that the present deregulated electricity markets

affect the competitiveness of players, by big producers being able to exercise market

power, the main challenge of the coming environment for electricity market is

reducing the cost associated with this behavior.

The idea of this project is to develop a mathematical model in order to: (1)

expose how market power can increase social cost by withholding generation capac-

ity, and (2) how optimal network configuration can reduce this cost and increase

the competition of players by manipulating the connectivity of the transmission

lines.

1.3 Objective

To accomplish this aim, reducing market power cost, two models are studied and

integrated. The first model is based on the work made by [14] and [16], that

considers traditional schemes of the electricity market with the assumption of

perfect competition between players, which is not always the case. To have a better

understanding of the real nature of the electricity market, imperfect competition

must be included. The second model introduces market power behavior, using

Game Theory concepts (Nash equilibrium) to model strategic units in the system,

that can choose to withhold capacity offered to the electricity market.

Both models are integrated to have a system under market power conditions

where transmission lines can be optimally switched to reduce the market power

cost.
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1.4 Resources/Tools used

The optimization problem is executed using the General Algebraic Modeling Sys-

tem (GAMS) platform. The deterministic optimization problem is solved with the

CPLEX solver in GAMS. The incidence matrices and other sets of parameters are

created in MATLAB and transferred to GAMS by using Comma-Separated Values

(CSV) files. The code is run on a computer with Intel Xeon E5345 with a 2.33

GHz clocking frequency and 16 GB of RAM. Linear programming relaxation is

employed to solve the optimization problem in GAMS.
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Chapter 2

Formulation of the Mathematical Model

Nowadays it is important for the electricity market regulator to minimize any

form of market power and to offer the consumer lower cost of generation. This

thesis proposes the use of optimal transmission switching by Transmission System

Operators to minimize market power behaviour of producers and lower market

power cost. To minimize the Social Cost under market power, a DC Optimal

Power Flow (DCOPF) model of the system [14] is considered.

This thesis presents an electricity market model that contemplates a market

power formulation and a DCOPF formulation with optimal transmission switching,

it also includes contingency analysis formulation. Both formulations are integrated

in the model as a bi-level optimization problem [24].

This chapter explains the formulation followed to integrate two models. The

first assuming perfect competition (DCOPF model) with transmission switching

and the second considering market power behavior, based on the substitution

of the equations of the DCOPF model by its equivalent optimality conditions,

Karush-Kuhn-Tucker (KKT) conditions.
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2.1 Assumptions

Following assumptions where made to simplified the model:

• Perfect information;

• No capacity limitations, units have enough installed capacity to supply the

load;

• The load is not price sensitive;

• There are no losses in the system,
∑N

i=1G =
∑N

i=1D;

• All lines are available in the initial conditions;

• All generators are available;

• Non-strategic units offer 100% of the maximum capacity to the market;

• Each portfolio (owner) has only one strategic unit;

• Marginal pricing: price is set by the maximum production cost.

2.2 Model Description

A linearized bi-level optimization problem is proposed. First the DC Optimal

Power Flow (DCOPF) model (with transmission switching) and Worst-Nash Equi-

librium (WNE) model are formulated independently and in detail in section 2.2.1

and section 2.2.2 respectively. Finally the proposed model is formulated in sec-

tion 2.2.3, integrating the models described in section 2.2.1 and section 2.2.2 as

a linearized bi-level optimization using Karush-Kuhn-Tucker (KKT) conditions.
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2.2.1 Optimal Transmission Switching

The aim of this model is to minimize the generation cost of the system using

optimal transmission switching, subject to physical constraints and Kirchhof laws

for power flow. DC approximations are used in the system, so the model can be

defined as a linear problem. This model is base under the assumption of perfect

competition.

The objective function and constrains of the optimization problem are base

on a DC Optimal Power Flow. Objective function and constraints are modified

to include the switching of the transmission lines and the cost associated. The

objective function of this optimization problem and its constraints are stated below

[14]:

Minimize
∑
u∈U

cugu +
L∑
l=1

cl (1− nl) (2.1a)

Subject to:

0 ≤ gu ≤ gu ∀u ∈ U (2.1b)

Fl nl ≤ Fl ≤ Fl nl ∀l ∈ L (2.1c)

gi + di + FlCl,i = 0 ∀i ∈ N, ∀l ∈ N (2.1d)

Bl (θn − θm)− Fl + (1− nl)M ≥ 0 ∀l ∈ L (2.1e)

Bl (θn − θm)− Fl − (1− nl)M ≤ 0 ∀l ∈ L (2.1f)

This formulation includes a new element: nl, which is a binary variable, and it

represents the connection status of each transmission line in the system. When a

line l is connected, nl = 1 and when it has been removed or opened, nl = 0.
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The objective function (2.1a) includes the cost of switching a transmission line.

The constraints of the optimization problem are:

• The generation limits of each unit (2.1b);

• The power flow limits of the line (2.1c). All lines are modelled with the

same maximum transmission capacity. The binary variable nl enables the

maximum capacity of the line when the line is connected and limits it to zero

when the line is disconnected.

• The energy balance constraint (2.1d).

• Kirchhoff’s law (2.1e),(2.1f), the mathematical function of this two equation

is to accentuate the fact that a disconnected line has no power flow. If the line

is connected, this variable will be zero and the formula represents the con-

nection of the line between nodes n and m. The parameter M is an arbitrary

large number, and it is introduced to influence how the system perceives the

network configuration. If a transmission line is connected (nl=1) Kirchhoff

Law represents the connection of the line between the nodes and the angles

difference between θm and θn will encourage the power flow through the line.

When the line is disconnected (nl=0) these two equations will no longer rep-

resent this angle difference between nodes (only a numerical affirmation) and

completes the formulation to represent the disconnection of the line. This

formulation will ensure no flow in an opened line [14].
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Contingency Analysis

To ensure the system is able to sustain its reliability, contingency analysis is con-

sidered in the formulation. Additional constrains are added to the previous (2.1)

to include the contingency status of the system:

Flc nl nc ≤ Flc ≤ Flc nl nc ∀l ∈L (2.2a)

gi + di + FlcCl,i = 0 ∀i ∈ N,∀l ∈ N (2.2b)

Bl (θnc − θmc)− Flc + (2− nl − nc)M ≥ 0 ∀l ∈L (2.2c)

Bl (θnc − θmc)− Flc − (2− nl − nc)M ≤ 0 ∀l ∈L (2.2d)

A new element nc (binary variable) is included in this constrains (2.2) to rep-

resent the connection status of each transmission line in the system during contin-

gency [16]. Contingency is defined as the loss of one single element in the system,

in this case a transmission line. When line l is contingency, nc = 0 (for line l) and

when is not contingency, nc = 1.

Equations (2.1)-(2.2) formulate the model for DCOPF with Optimal Transmis-

sion Switching (OTS) and Contingency Analysis.

2.2.2 Worst-Nash Equilibrium

Assuming that generating units can behave strategically, choosing to withhold

some of their outputs, we consider that market power is exercised by a supplier
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(owner of a strategic unit) when it is intentionally withholding its production

capacity. This action will increase the cost of generation in the system and increase

the profit of the unit. Perfect competition conditions for electricity market studies,

where all units are non-strategic units (are assumed to bid competitively) is no

longer an assumption, since some units are considered to be strategic in this model.

Game theory concepts are used in this project to model the strategic decision

of the generating units, in particular Cournot Competition and Nash Equilibrium

concepts.

The Cournot Competition concepts considered for this project include: (1) Few

players (suppliers) and many strategies. (2) Strategies are define as the quantities

(q) the players produce of an identical product. (3) The cost of production is cuq

(with a constant marginal cost). (4) Players aime to maximize their profit [25].

A strategy profile Sp is a Nash Equilibrium if for each individual player, its

choice s is the best response to the other players choices. Figure 2.1 shows the

response curve of two players; BR1(R2) reflects the best responses of player 1 (R1)

according to player 2 responses (R2), the same for BR2(R1). The strategy chosen

by the each player where they intersect (R1∗ and R2∗ respectively) is the the Nash

Equilibrium response for each of them.

Some considerations under Nash Equilibrium are: (1) Under Nash Equilibrium

there is no individual incentive of each player to deviate from s if all actions of

all players are hold constant. Only under Nash Equilibrium are no regrets for all

players. (2) Everybody in the game believes that everybody else will also play their

particular part in the Nash Equilibrium. (3) There can be many Nash Equilibriums

for a problem. Problems can converge to a bad equilibrium for players base on

decreasing the profits, and can also converge to a good equilibrium for the players
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base on increasing profits [26], [27].

Figure 2.1: Nash equilibrium found by two players [3].

When all players reach their own strategy and thereby have maximized their

own profit (πp), the Nash Equilibrium has been reached [28]. In this study suppliers

(producers) will act as players trying to find the Nash equilibrium to maximize

their profit. Market power in the system is model as the Worst-Nash Equilibrium

(WNE), defined as the Nash Equilibrium which maximizes the generation cost

(Social Cost).

There will be strategic units and non-strategic units in the formulation. For

this model, each producer that owns an strategic unit is define as to posses a

portfolio for each strategic unit it owns. For simplicity it is assumed that each

owner that behaves strategically may have maximum one portfolio. Then there

will be as many portfolios as strategic units are. Where the strategic unit is able

to exercise strategies considering Nash equilibrium.

The aim of this model (2.3) is to maximize the generation cost (Social Cost)

of the system an obtain the Worst-Nash Equilibrium, subjected to the two main

constraints. These constraints are:
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• Non-strategic units will offer their maximum capacity to the system and

strategic units can choose from a finite set of actions how much they will

offer to the market.

• The profit of a portfolio under Nash Equilibria (πp) is higher than the profit

of a portfolio that does not considers Nash Equilibria for its dispatch (πp,sp ).

Maximize
∑
u∈U

cugu (2.3a)

Subject to:

ĝu =
K∑
k=1

guxukwk + w0gu ∀u ∈ U (2.3b)

πp ≥ πp,sp u ∈ U (2.3c)

Strategic and non-strategic units u are part of the set of generating units U ,

have a variable cost of production cu and their production under Nash Equilibrium

is gu. Then the generation cost or Social Cost (SC) under Nash Equilibrium is

define (2.3a). The offered capacity (ĝu) of a strategic unit is determined by profit

maximization. In (2.3b) gu is the maximum capacity of the generating unit u,

the binary variable xuk indicates whether the unit is strategic xuk = 0 or non-

strategic xuk = 1. The percentage of maximum capacity that a strategic unit

will offer is defined by w0. And the withheld capacity is defined by wk so that∑K
k=1wk = 1 − w0. So when the unit is non-strategic

∑K
k=0wk = 1 and the unit

will offer its maximum capacity (2.4). Each strategic unit is assumed to have

potentially 4 levels of output, therefore each portfolio will have 4 different possible
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strategies; since a portfolio has only one strategic unit and no non-strategic units.

ĝu =


guw0 if xuk = 0

gu

K∑
k=0

wk if xuk = 1
(2.4)

It is stated before and again in (2.3c) that the profit of a portfolio under Nash

Equilibrium πu is greater than the profit of the same portfolio rather than when it

is not considering the equilibrium strategies (πp,sp ). We said that the same portfolio

does not considers Nash equilibrium when we hold the offers of every other portfolio

constant, and replace the offer of this portfolio with another strategic combination

s ∈ Sp [28]. If there were more than one strategic unit for portfolio, the profit of

it would be the sum of the individual profits of each strategic units (πu) as:

πp =
∑
u∈O(p)

πu

For the proposed model the profit of a portfolio p, πp, is the same as the profit of

a unit u, πu. The profit of a single unit can be defined as: πu = (Pi− cu)gu, where

Pi is the local marginal price at the node i, cu is the variable cost of the unit and

gu is its respectively dispatch. This equation can also be expressed as πu = µup
u ĝu,

where µup
u is the Lagrange multiplier of the constraint of each unit so it cannot

exceed its offer.

The expression for the profit of a unit πu is not linear, so to linearize this

expression two considerations are made [23]:
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(1) If X and Y are positive variables in an optimization problem, b is a bi-

nary variable and M is a large number, the non-linear equation XY = 0 can be

rewritten:

Xb + Y (1− b) = 0 (2.5a)

Can be written as two simple linear constrains:

−M(1− b) ≤ X ≤M(1− b) (2.5b)

−Mb ≤ Y ≤Mb (2.5c)

(2) Considering if λ is a Lagrange multiplier and x is a decision variable, the

multiplication of this two variables is not linear, supposing that x takes a set of

finite values x =
∑m

j=1 ajbj + a0 for constants a0, ..., am and m binary variables

b1, ..., bm. Introducing a new variable cj that satisfies: cj − λbj = 0. This expres-

sion is of the form of (2.5a) and can be written as two simple linear constrains

(2.5b),(2.5c).

Then the expression for the profit of a unit πu is linearize introducing a variable

zuk = µup
u xuk, where xuk is a binary variable. The equation zuk is now linearized

as three equations [23]:

zuk − µup
u ≤M (1− xuk) (2.6a)

zuk − µup
u ≥ −M (1− xuk) (2.6b)

zuk ≤Mxuk (2.6c)
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Introducing linearized equations (2.6) to the definition of the profit of a port-

folio πp:

πp =
K∑
k=1

kuzukwk + µup
u w0ku (2.7)

The model to obtain the Worst-Nash Equilibrium is formulated in (2.3)-(2.7).

These equations are linearized, so the model can be defined as a linear problem.

2.2.3 Integrated Model of Optimal Transmission Switching and Worst-

Nash Equilibrium

Nowadays it is important for the electricity market regulator to minimize any form

of market power and to offer the consumers lower cost of generation. This thesis

proposes the use of optimal transmission switching implemented by Transmission

System Operators to minimize market power behaviour of producers and lower

market power cost. A linearized bi-level optimization problem is proposed, WNE

formulation and OTS formulation are integrated as a set of primary conditions and

secondary conditions respectively. This integration is based on the substitution of

the OTS formulation by its equivalent optimal conditions, also known as Karush-

Kuhn-Tucker (KKT) conditions [29],[30]. The primary conditions are defined by

the same formulation presented for the WNE model (2.3)-(2.7).

KKT conditions are developed for the DCOPF with Optimal Transmission

Switching and Contingency Analysis model, these conditions will be defined as

the secondary conditions of our integrated model. The inner dispatch problem

minimizes the social cost, subject to constrains as in (2.1)-(2.2), except for (2.1b)
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which from now on will be redefine as 0 ≤ gu ≤ ĝu (2.8b) to include the strategic

units behavior. The secondary conditions are defined as:

Maximize −
∑
u∈U

cugu +
L∑
l=1

cl (1− nl) (2.8a)

Subject to:

0 ≤ gu ≤ ĝu ∀u ∈ U (2.8b)

Fl nl ≤ Fl ≤ Fl nl ∀l ∈ L (2.8c)

gi + di + FlCl,i = 0 ∀i ∈ N (2.8d)

Bl (θn − θm)− Fl + (1− nl)M ≥ 0 ∀l ∈ L (2.8e)

Bl (θn − θm)− Fl − (1− nl)M ≤ 0 ∀l ∈ L (2.8f)

Flc nl nc ≤ Flc ≤ Flc nl nc ∀l ∈ L (2.8g)

gi + di + FlcCl,i = 0 ∀i ∈ N (2.8h)

Bl (θnc − θmc)− Flc + (2− nl − nc)M ≥ 0 ∀l ∈ L (2.8i)

Bl (θnc − θmc)− Flc − (2− nl − nc)M ≤ 0 ∀l ∈ L (2.8j)

First the Lagrangian function of the DCOPF with Optimal Transmission Switch-

ing and Contingency Analysis of (2.8) is defined as (2.9).Where ρi, λ
down
l , λupl ,

µdown
u , µup

u , βdown
l , βup

l , δi, α
down
l , αup

l , εdown
l and εupl are the Lagrange multipliers

of the problem constraints.
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L =−
∑
u∈U

cugu +
L∑
l=1

cl (1− nl)

+ ρi (gi + di + FlCl,i)

+
L∑
l=1

λdown
l

(
Fl nl − Fl

)
+

L∑
l=1

λupl

(
Fl − Fl nl

)
+

U∑
u

µdown
u

(
gu − gu

)
+

U∑
u

µup
u

(
gu − gu

)
+

L∑
l=1

βdown
l

(
−Bl (θn − θm) + Fl − (1− nl)M

)
+

L∑
l=1

βup
l

(
Bl (θn − θm)− Fl − (1− nl)M

)
+ δi (gi + di + FlcCl,i)

+
L∑
l=1

αdown
l

(
Flc nl nc − Flc

)
+

L∑
l=1

αup
l

(
Flc − Flc nl nc

)
+

L∑
l=1

εdown
l

(
−Bl (θnc − θmc) + Flc − (2− nl − nc)M

)
+

L∑
l=1

εupl

(
Bl (θnc − θmc)− Flc − (2− nl − nc)M

)
(2.9)

The Dual feasibility conditions are:

ρi, δi → free ∀i ∈ N (2.10a)

λdown
l , λupl ≥ 0 ∀l ∈ L (2.10b)
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µdown
u , µup

u ≥ 0 ∀u ∈ U (2.10c)

βdown
l , βup

l ≥ 0 ∀l ∈ L (2.10d)

αdown
l , αup

l ≥ 0 ∀l ∈ L (2.10e)

εdown
l , εupl ≥ 0 ∀l ∈ L (2.10f)

The Lagrangian function is formulated by setting each side of the constraints

less/equal to zero, separating the lower boundary from the upper boundary condi-

tions. Each of this conditions are multiplied by a Lagrange multiplier respectively.

Finally, the objective function is added to the sum of these constraints as in (2.9).

The process is known as Lagrange relaxation, where these changes an uncon-

strain problem of minimization is obtain from a constrain problem with equality

and inequality restrictions [29]. Now KKT conditions are derive from the La-

grangian.

The stationary conditions derived from the Lagrangian are defined as:

∂L
∂gu

= −cu + ρi − µdown
u + µup

u + δi = 0 (2.11a)

∂L
∂θi

=
L∑
l=1

βdown
l (Ci,l)

T Bl −
L∑
l=1

βup
l (Ci,l)

T Bl = 0 (2.11b)

∂L
∂Fl

= ρi − λdown
l + λupl + βdown

l − βup
l = 0 (2.11c)

∂L
∂θic

=
L∑
l=1

εdown
l (Ci,l)

T Bl −
L∑
l=1

εupl (Ci,l)
T Bl = 0 (2.11d)

∂L
∂Flc

= δi − αdown
l + αup

l + εdown
l − εupl = 0 (2.11e)

The stationary conditions (2.11) are defined as the partial derivatives of the

Lagrange function in respect to the variables of the secondary conditions and equal
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to zero. These variables are gu, θi, Fl,θic and Flc.

Then complementary slackness conditions derived from the Lagrange function:

L∑
l=1

λdown
l

(
Fl nl − Fl

)
= 0 ∀l ∈ L (2.12a)

L∑
l=1

λupl

(
Fl − Fl nl

)
= 0 ∀l ∈ L (2.12b)

U∑
u

µdown
u

(
gu − gu

)
= 0 ∀u ∈ U (2.12c)

U∑
u

µup
u

(
gu − gu

)
= 0 ∀u ∈ U (2.12d)

L∑
l=1

βdown
l

(
−Bl (θn − θm) + Fl − (1− nl)M

)
= 0 ∀l ∈ L (2.12e)

L∑
l=1

βup
l

(
Bl (θn − θm)− Fl − (1− nl)M

)
= 0 ∀l ∈ L (2.12f)

L∑
l=1

αdown
l

(
Flc nl nc − Flc

)
= 0 ∀l ∈ L (2.12g)

L∑
l=1

αup
l

(
Flc − Flc nl nc

)
= 0 ∀l ∈ L (2.12h)

L∑
l=1

εdown
l

(
−Bl (θnc − θmc) + Flc − (2− nl − nc)M

)
= 0 ∀l ∈ L (2.12i)

L∑
l=1

εupl

(
Bl (θnc − θmc)− Flc − (2− nl − nc)M

)
= 0 ∀l ∈ L (2.12j)

These complementary conditions only consider the constraints that are defined

as less/equal than zero. They are the lower boundary and upper boundary of each

constrain multiplied by their respective Lagrange multiplier and equal to zero.
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Conditions in (2.12) are no-linear. To guaranty that the KKT conditions solve

the problem and obtain the global optimal solution, these equations are reformu-

lated as a Mix Integer Linear Programming problem (MILP) by introducing binary

variables to linearize the problem as was estate above in (2.5). A set of two linear

linear equations represent each equation of the complementary slackness condition:

−M
(
1− blow−λl

)
≤
(
Fl nl − Fl

)
≤M

(
1− blow−λl

)
(2.13a)

−M
(
blow−λl

)
≤ λlowl ≤M

(
blow−λl

)
(2.13b)

−M
(

1− bup−λl

)
≤
(
Fl − Fl nl

)
≤M

(
1− bup−λl

)
(2.13c)

−M
(
bup−λl

)
≤ λupl ≤M

(
bup−λl

)
(2.13d)

−M
(
1− blow−µu

)
≤
(
gu − gu

)
≤M

(
1− blow−µu

)
(2.13e)

−M
(
blow−µu

)
≤ µlow

u ≤M
(
blow−µu

)
(2.13f)

−M
(
1− bup−µu

)
≤
(
gu − gu

)
≤M

(
1− bup−µu

)
(2.13g)

−M
(
bup−µu

)
≤ µup

u ≤M
(
bup−µu

)
(2.13h)

−M
(

1− blow−βl

)
≤
(
−Bl (θn − θm) + Fl − (1− nl)M

)
≤M

(
1− blow−βl

)
(2.13i)

−M
(
blow−βl

)
≤ βlow

l ≤M
(
blow−βl

)
(2.13j)
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−M
(

1− bup−βl

)
≤
(
Bl (θn − θm)− Fl − (1− nl)M

)
≤M

(
1− bup−βl

)
(2.13k)

−M
(
bup−βl

)
≤ βup

l ≤M
(
bup−βl

)
(2.13l)

−M
(
1− blow−αl

)
≤
(
Flc nl nc − Flc

)
≤M

(
1− blow−αl

)
(2.13m)

−M
(
blow−αl

)
≤ αlow

l ≤M
(
blow−αl

)
(2.13n)

−M
(
1− bup−αl

)
≤
(
Flc − Flc nl nc

)
≤M

(
1− bup−αl

)
(2.13o)

−M
(
bup−αl

)
≤ αup

l ≤M
(
bup−αl

)
(2.13p)

−M
(
1− blow−εl

)
≤
(
−Bl (θnc − θmc) + Flc − (2− nl − nc)M

)
≤M

(
1− blow−εl

)
(2.13q)

−M
(
blow−εl

)
≤ εlowl ≤M

(
blow−εl

)
(2.13r)

−M
(
1− bup−εl

)
≤
(
Bl (θnc − θmc)− Flc − (2− nl − nc)M

)
≤M

(
1− bup−εl

)
(2.13s)

−M
(
bup−εl

)
≤ εupl ≤M

(
bup−εl

)
(2.13t)

Recalling that the primary conditions are defined by the same formulation pre-

sented for the WNE model (2.3)-(2.7), the integration of the secondary conditions

to the primary conditions in the bi-level problem is now complete by defining the

secondary conditions as (2.8), (2.11) and (2.13).

The complete optimization problem is formulated in (2.14), where the objective

function is to find the the maximum Social Cost under Nash equilibrium and min-

imize it by implementing Optimal Transmission Switching. The overall problem

is a Mixed-Integer Linear Program:
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Maximize (2.8a) (2.14a)

Subject to: (2.3b)− (2.7), (2.8b)− (2.8j), (2.11), (2.13)

(2.14b)
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Chapter 3

IEEE 14 Bus Test Case, Results and Discussion

For a better understanding the IEEE fourteen node example system is modified

and used to illustrate the proposed model. Data from the system was obtained

from the University of Washington Power System Test Case Archive [31]. Both

transmission switching in perfect competition and under market power are ap-

plied to the modified IEEE 14-node example system and studied in detail. The

deterministic optimization problem is solved with the CPLEX solver in General

Algebraic Modeling System (GAMS) platform [32]. The incidence matrices and

other sets of parameters are created in MATLAB and transferred to GAMS by

using Coma-Separated Values (CSV) files. The code is run on a computer with

Intel Xeon E5345 with a 2.33 GHz clocking frequency and 16 GB of RAM. Linear

programming relaxation is employed to solve the optimization problem in GAMS.

3.1 Modified IEEE 14 Node Example System

The modified IEEE 14-node example system is illustrated in figure 3.1, this ex-

ample system has fourteen nodes and twenty power lines. The generation costs

are assumed to be linear, resistance of the line and shunt capacitance are zero,
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maximum transmission capacity of the lines is set to 20MW, losses and reactive

power are ignored. The example system in figure 3.1 is modified to have three

portfolios, each with one strategic unit that has four possible levels of output. The

strategic units are u3, u5 and u6 (shadow units) and they belong to Portfolio 1,

Portfolio 2 and Portfolio 3 respectively. The characteristics of the generators is

presented in table 3.1, table 3.2 shows the load data and transmission lines data

is presented in table 3.3. Modifications from the IEEE test system are made for

the generators data, also synchronous condensers (bus 3, bus 6 and bus 8) are not

considered for this study.

Table 3.1: Generator data.

ID Bus Unit Size [MW] Cost of generation [$/MWh]

u1 1 30 30

u2 2 200 20

u3 3 150 100

u4 3 100 10000

u5 13 100 5000

u6 6 100 100

u7 3 100 150

u8 14 100 100

3.2 Results and Discussion

3.2.1 The Traditional Model for Perfect Competition vs. Nash Equi-

libria Model

The traditional model for perfect competition is a Mixed Integer Linear Program-

ming problem presented in (2.1) as Optimal Power Flow formulation, coded using
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Figure 3.1: Single line diagram of the 14 node example system.

the GAMS platform and solved with the CPLEX solver. The optimal generation

dispatch for the 14-node example system in perfect competition is shown in table

3.4. Transmission switching under perfect competition (A transmission element

open) will result in SC increase, therefor the optimal solution is no transmission

element open (minimum SC). When Nash equilibrium is considered in the exam-

ple system with no transmission switching in the lines, the results are referred to

as Base Case study. The MILP programming dispatch results are obtained and
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Table 3.2: Load data.

Bus Total Demand [MW]

2 21.7

3 94.2

4 47.8

5 7.6

6 11.2

9 29.5

10 9

11 3.5

12 6.1

13 13.5

14 14.9

presented in table 3.5.

Under traditional perfect competition, u3 offers its true marginal cost to the

market. The same unit under Nash equilibrium withholds about 93.75% of its real

capacity. The Base Case where units are allowed to have strategic behavior by

withholding capacity, shows a drastic increase in social cost from $20688 MWh to

$60117 MWh, which is almost 290%.

This study shows the impact that strategically behaving generators can cause

and how important it is to control its disposition to physical withholding. It also

provides with a better understanding of how important it is to consider market

power when economic considerations are studied in the system and social cost is

to be minimized.
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Table 3.3: Line data.

ID From Bus To Bus XID [Ω]

L1 1 2 0.05917

L2 1 5 0.22304

L3 2 3 0.19797

L4 2 4 0.17632

L5 2 5 0.17388

L6 3 4 0.17103

L7 4 5 0.04211

L8 4 7 0.20912

L9 4 9 0.55618

L10 5 6 0.25202

L11 6 11 0.19890

L12 6 12 0.25581

L13 6 13 0.13027

L14 7 8 0.17615

L15 7 9 0.11001

L16 9 10 0.08450

L17 9 14 0.27038

L18 10 11 0.19207

L19 12 13 0.19988

L20 13 14 0.34802

3.2.2 The Proposed Model for Reducing Market Power Cost

In contrast with the Base Case for the Nash Equilibrium model, the proposed

model for reducing market power cost (2.14) applied to the 14-node example sys-

tem can be used to obtain an optimal planning for switching several lines in the

system (lines 4-9 and 13-14). After opening the transmission lines suggested by

the program, the system’s network is shown as in figure 3.2.
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Table 3.4: Optimal dispatch for perfect competition.

u g [MW] Cost [$/h]

u1 30 900

u2 38.89 777.8

u3 101.762 10176.2

u4 0 0

u5 0 0

u6 46.828 4682.8

u7 0 0

u8 41.52 4152

Total 259 20689

Table 3.5: Optimal dispatch under Nash equilibrium (base case).

u g [MW] Cost [$/h]

u1 30 900

u2 44.441 888.82

u3 9.375 937.5

u4 2.203 22030

u5 2.666 13330

u6 25 2500

u7 100 15000

u8 45.316 4531.6

Total 259 60118
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Table 3.6: Optimal dispatch under Nash equilibrium (switched line).

u g [MW] Cost [$/h]

u1 0.0007 0.021

u2 101.699 2033.98

u3 84 8400

u4 0 0

u5 0 0

u6 38.4 3840

u7 0 0

u8 34.9 3490

Total 259 17764

Table 3.7: Generation capacity offer to the market in the base case.

u g [MW] ĝ [MW]

u1 30 30

u2 200 200

u3 150 84

u4 100 100

u5 100 32.15

u6 100 38.4

u7 100 100

u8 100 100

The new topology of the system changes the power flow of the lines as shown

in table 3.8. It shows an increase of 233.3% in congested lines. When a fault

occurs in one of the transmission lines that are congested before switching, the

proposed model shows the system remains stable and transmission lines are opti-

mally switched off to minimize the social cost.

The results show a significantly lower Social Cost compared to the Base Case,
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Table 3.8: Power flow before/after switching.

FL [MW]

ID Before After

L1 14.199 -19.9

L2 15.801 20

L3 1.502 20

L4 20 20

L5 15.437 20

L6 18.88 9.8

L7 20 20

L8 7.04 -

L9 4.04 2

L10 3.638 12.4

L11 10.92 20

L12 3.53 3.525

L13 2.988 16.075

L14 0 0

L15 7.04 -

L16 12.5 12.5

L17 -20 -20

L18 -3.5 -3.5

L19 -2.57 -2.575

L20 10.416 -
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Figure 3.2: Single line diagram of the 14 node example system after switching.

table 3.9, with a reduction of 70.45%. This proposed model encourages strategic

units (u3, u5, u6) to be more competitive and offer more capacity to the market,

as it is shown in table 3.10. Hereby the total withheld capacity of the system has

been reduced from 70.4% to 55.8% (figure 3.3) of the installed capacity in strategic

generators, which is an increase of 51.43MW capacity offered to the market. The

strategic units u3 and u6 are the major contributors to reducing the Social Cost by
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Table 3.9: Social cost.

# lines switched Open Lines SC [$/MWh]

0 - 60118

2 Bus 4-9, Bus 13-14 17764

Table 3.10: Generation capacity offer before/after switching.

u g [MW]
ĝu [MW]

before after

u1 30 30 30

u2 200 200 200

u3 150 9.375 84

u4 100 100 100

u5 100 68.75 32.15

u6 100 25 38.4

u7 100 100 100

u8 100 100 100

clearly reducing their withheld strategy, bidding more competitively and offering

a capacity closer to their maximum as is shown in figure 3.4 and figure 3.5.

Optimal Transmission Switching reduces the total withholding, but looking

closely at table 3.10 we can see that u5 instead of reducing its own withholding,

the proposed model has given it incentive to exercise more market power (figure

3.6); nevertheless the total Social Cost still decreases and hence society benefits

from it.

The switching of these lines (lines 4-9 and 13-14) jointly give the highest social

cost reduction. If there is a limitation on the number of lines that are allowed

to switch and it is lower than the optimal solution, the Social Cost will still be

reduced and lower than the Base Case social cost, but will be higher than the
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Figure 3.3: Impact of optimal transmission switching in withholding reduction.

optimal solution.

It has been proven that Optimal Transmission Switching can be used as one of

many policies to increase Competition Benefit by minimizing market power cost.

These results show the high impact of switching a small number of lines in the

system on the total operational cost. It is important to notice that the proposed

method is made for the systems that were designed or expanded by only taking

into consideration the excess demand in the system, therefore the Social Cost are

not considered during planning, which are most of the systems in operation today.

3.2.3 Contingency Analysis

To ensure the system is able to sustain its reliability under the proposed model

for reducing Market Power cost, contingency analysis is considered in formula-

tion (2.14). To represent the connection status of each transmission line during

contingency, the parameter nc (binary variable) is introduced in the formulation.

The variable tests each line as a contingency element and evaluate its effects on
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Figure 3.4: Marginal Cost Curve of u3.

the system reliability including Optimal Transmission Switching to reduce market

power cost.

When contingency is defined for a transmission lined, a new network topology

is set. For this topology the program suggests an optimal planning for switching

several lines in order to minimize the social cost. The proposed model considering

contingency analysis is applied to the 14-node example system.

Contingency for each line is studied and results are presented in table 3.11.

For most of the contingency cases transmission lines are optimally switched off to

minimize the social cost, for these contingency cases the system remains stable.

During the contingency analysis the Social Cost variate for different cases, some

of them present an increase up to 9% of the social cost (for contingencies in line 2,

line 3 and line 5 respectively) compared to the social cost for optimal transmission
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Figure 3.5: Marginal Cost Curve of u6.

switching under Nash Equilibria when there is no contingency ($17764 MWh).

Observing table 3.11 the optimal transmission lines switched to reduce SC

under contingency for the feasible results are mainly the same as the ones proposed

in section 3.2.2. Then for these contingency scenarios it can be concluded that the

system can sustain its reliability under the proposed model for reducing social cost.

Nevertheless this conclusions can not be generalized for all scenarios, table 3.11

shows infeasible results for several contingency conditions (35% of the contingency

cases are infeasible). An infeasible solution stands for: there is no solution that

fulfills all the constrains, the problem has no solution [5]. These infeasibilities do

not necessarily reflect the stability of the system. There are two main reasons to

which these infeasibility results can be attributed: (1) There is no Nash Equilib-

rium found in the system, there is no strategy that can be arranged between the
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Figure 3.6: Marginal Cost Curve of u5.

players (producers). (2) The mathematical model implemented is too simple to

reach the solution.

Therefore taking into account all these considerations, the proposed model

(optimal transmission switching to reduce market power cost) presents promising

results to sustain the reliability of the system after a fault has occur.
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Table 3.11: Contingency analysis ( SC & OTS under NE)

Contingency Open lines SC [$/MWh]

L1 L8,L14,L15,L20 17964

L2 L1,L14 19364

L3 L8,L14,L15,L20 19364

L4 - infeasible

L5 L14,L20 19364

L6 - infeasible

L7 - infeasible

L8 L14,L15,L20 17764

L9 L14,L20 17764

L10 L8,L12,L14,L15,L20 18756

L11 - infeasible

L12 L8,L14,L15,L20 17764

L13 L8,L14,L15 17764

L14 L8,L15,L20 17764

L15 L8,L14,L20 17764

L16 - infeasible

L17 - infeasible

L18 - infeasible

L19 L8,L14,L15,L20 17764

L20 L8,L14,L15 17764
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

Nowadays deregulated markets face the problem that their transmission systems

had been designed with mainly efficiency considerations, this affects the competi-

tively of players, giving room for producer to exercise horizontal market power.

A mathematical model was developed to quantify the generation cost and re-

duce market power. Horizontal market power was reduced by restraining producers

from withholding their generation capacity.

Optimal transmission switching is proposed with a Worst-Nash Equilibrium

(maximizes Social Cost) linear optimization and tested on a 14-node example

system.

The proposed mathematical formulation is based on game theory concepts

(Nash equilibrium); the formulation includes strategic generators that might choose

to withhold some of their output and non-strategic generators that offer their max-

imum production capacity to the market.

The proposed method has improved competition, reducing the total withheld

capacity of the system from 70.4% to 55.8% of the installed capacity in strategic
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generators. The system increases 51,43MW of generation capacity offer to the

market. Results demonstrate that the Social Cost of the system has reduced up

to 70.45%, increasing the efficiency of the market.

Including optimal transmission switching increases the economic benefit in sys-

tems designed with only reliability and efficiency planning considerations. This

thesis gives a glance of the impact and how important it is for society that trans-

missions planning considers not only meeting the demand but also reducing the

cost for society.

4.2 Future Work

The proposed model considers a transmission switching formulation based on a

DC Optimal Power Flow. Further studies consider the use of an AC Optimal

Power Flow formulation to measure the impact of the transmission switching in

the voltage levels, reactive power and transient stability.

A multi-period model is recommended to investigate the variations that are

observed in the demand during the different seasons in a year and their impact in

reducing market power.

Introducing optimal transmission switching in large scale can present a chal-

lenge due to large computational time. To make this feasible, the impact of optimal

transmission switching in specific areas of the system should be studied closely to

determine if they can affect the overall efficiency of the network.

A more detailed and stronger reliability criteria analysis must be carried and

ensure reliability of the system after transmission switching. One consideration is

that the example system was not congested before optimal transmission switching
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implementation; congested network previous switching must be taken into account

to see how transmission switching (to regulate market power) can jeopardize the

system reliability.

Future work includes optimal control of power flow capacity through the trans-

mission lines to minimize market power cost by using power electronics in the

transmission lines.
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Appendix A

GAMS Code



C:\Users\Maria\Desktop\appendix gams\14_1.gms  25 September 2012 18:29:09 Page 1

    1 * Modelling Optimal Transmission switching and Extremal Nash Equilibria in Wh»

      olesale Electricity Markets

    2 * Using a Single Stage Mixed Integer Linear Program

    3 *

    4 * This version: 1.0 (29 July 2012)

    5 

    6  Sets

    7    p portfolios owning strategic generating units

    8       /p1*p3/

    9    n set of connection nodes in the system

   1 0       /n1*n14/

   1 1    u generating units

   1 2       /u1*u11/

   1 3    owns(p,u) ownership relation between portfolios and units

   1 4       /p1.u3, p2.u6, p3.u7/

   1 5    nd(n,u) connection node of each generating unit

   1 6       /n1.u1, n2.u2, n3.u3, n3.u4, n8.u5, n13.u6, n6.u7, n3.u8, n14.u9, n4.u1»

      0, n9.u11/

   1 7    l transmission links

   1 8       /l1*l20/

   1 9    nt(n,l) conection node of each line

   2 0      /n1.l1, n2.l1, n1.l2, n5.l2, n2.l3, n3.l3, n2.l4, n4.l4, n2.l5, n5.l5, n»

      3.l6, n4.l6, n4.l7, n5.l7, n4.l8, n7.l8, n4.l9, n9.l9, n5.l10, n6.l10, n6.l11»

      , n11.l11,

   2 1       n6.l12, n12.l12, n6.l13, n13.l13, n7.l14, n8.l14, n7.l15, n9.l15, n9.l1»

      6, n10.l16, n9.l17, n14.l17, n10.l18, n11.l18, n12.l19, n13.l19, n13.l20, n14»

      .l20 /

   2 2    s s range of scenarios to be considered in a year /ss1/

   2 3 ;

   2 4  Parameters

   2 5    cost(u) variable cost of generating unit u dollars per MWh

   2 6        /u1 30, u2 20, u3 100, u4 10000, u5 5000, u6 100, u7 150, u8 100/

   2 7 

   2 8    cap(u,ss) maximum production capacity for unit u in MW

   2 9         /u1.ss1 30, u2.ss1 200, u3.ss1 150, u4.ss1 100, u5.ss1 100, u6.ss1 10»

      0, u7.ss1 100, u8.ss1 100/

   3 0 

   3 1    F(l,ss) flow limits

   3 2         /l1.ss1 20, l2.ss1 20, l3.ss1 20, l4.ss1 20, l5.ss1 20, l6.ss1 20, l7»

      .ss1 20, l8.ss1 20, l9.ss1 20, l10.ss1 20, l11.ss1 20, l12.ss1 20, l13.ss1 20»

      , l14.ss1 20, l15.ss1 20, l16.ss1 20, l17.ss1 20, l18.ss1 20, l19.ss1 20, l20»

      .ss1 20/

   3 3 

   3 4    Fc(l,ss) flow limits

   3 5         /l1.ss1 20, l2.ss1 20, l3.ss1 20, l4.ss1 20, l5.ss1 20, l6.ss1 20, l7»

      .ss1 20, l8.ss1 20, l9.ss1 20, l10.ss1 20, l11.ss1 20, l12.ss1 20, l13.ss1 20»

      , l14.ss1 20, l15.ss1 20, l16.ss1 20, l17.ss1 20, l18.ss1 20, l19.ss1 20, l20»

      .ss1 20/

   3 6 

   3 7    C(l,n) incidence matrix

   3 8         /l1.n1  -1,  l1.n2   1,

   3 9         l2.n1   -1,  l2.n5   1,

   4 0         l3.n2   -1,  l3.n3   1,

   4 1         l4.n2   -1,  l4.n4   1,

   4 2         l5.n2   -1,  l5.n5   1,

   4 3         l6.n3   -1,  l6.n4   1,

   4 4         l7.n5   -1,  l7.n4   1,

   4 5         l8.n4   -1,  l8.n7   1,

   4 6         l9.n4   -1,  l9.n9   1,

   4 7         l10.n5  -1,  l10.n6  1,

   4 8         l11.n6  -1,  l11.n9  1,
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   4 9         l12.n6  -1,  l12.n12 1,

   5 0         l13.n6  -1,  l13.n13 1,

   5 1         l14.n7  -1,  l14.n8  1,

   5 2         l15.n7  -1,  l15.n9  1,

   5 3         l16.n9  -1,  l16.n10 1,

   5 4         l17.n9  -1,  l17.n14 1,

   5 5         l18.n11 -1,  l18.n10 1,

   5 6         l19.n12 -1,  l19.n13 1,

   5 7         l20.n14 -1,  l20.n13 1/

   5 8 

   5 9    CG(u,n) matrix of each generating unit connection's to node

   6 0      /u1.n1  1,  u2.n2 1,   u3.n3 1, u4.n3 1,    u5.n8 1,   u6.n13 1,

   6 1       u7.n6  1,  u8.n3 1,   u9.n14 1, u10.n4 1,    u11.n9 1/

   6 2 

   6 3    D(n,ss) total demand

   6 4        /n2.ss1 21.7, n3.ss1 94.2, n4.ss1 47.8, n5.ss1 7.6, n6.ss1 11.2, n9.ss»

      1 29.5, n10.ss1 9, n11.ss1 3.5, n12.ss1 6.1, n13.ss1 13.5, n14.ss1 14.9/

   6 5 

   6 6    XX(l,ss) electrical reactance of line l

   6 7        /l1.ss1 0.05917, l2.ss1 0.22304, l3.ss1 0.19797, l4.ss1 0.17632, l5.ss»

      1 0.17388, l6.ss1 0.17103, l7.ss1 0.04211, l8.ss1 0.20912, l9.ss1 0.55618, l1»

      0.ss1 0.25202, l11.ss1 0.19890, l12.ss1 0.25581, l13.ss1 0.13027, l14.ss1 0.1»

      7615, l15.ss1 0.11001, l16.ss1 0.08450, l17.ss1 0.27038, l18.ss1 0.19207, l19»

      .ss1 0.19988, l20.ss1 0.34802/

   6 8 

   6 9    B(l,ss) electrical susceptance of line l

   7 0 

   7 1    cl(l,ss)  cost of removing a line

   7 2        /l1.ss1 5, l2.ss1 5, l3.ss1 5, l4.ss1 5, l5.ss1 5, l6.ss1 5, l7.ss1 5,»

       l8.ss1 5, l9.ss1 5, l10.ss1 5, l11.ss1 5, l12.ss1 5, l13.ss1 5, l14.ss1 5, l»

      15.ss1 5, l16.ss1 5, l17.ss1 5, l18.ss1 5, l19.ss1 5, l20.ss1 5/

   7 3 

   7 4    nc(l,ss) operation status of a line during contingency

   7 5        /l1.ss1 1, l2.ss1 1, l3.ss1 1, l4.ss1 1, l5.ss1 1, l6.ss1 1, l7.ss1 1,»

       l8.ss1 1, l9.ss1 1, l10.ss1 1, l11.ss1 1, l12.ss1 1, l13.ss1 1, l14.ss1 1, l»

      15.ss1 1, l16.ss1 1, l17.ss1 1, l18.ss1 1, l19.ss1 1, l20.ss1 1/

   7 6 

   7 7    prob(ss) probability of each scenario

   7 8        /ss1 1.0/

   7 9 

   8 0    num_units(p) number of units in portfolio p;

   8 1 

   8 2    num_units(p)=sum(u$owns(p,u),1);

   8 3    B(l,ss)=1/XX(l,ss)

   8 4    ;

   8 5 

   8 6 * The following variables will need to be changed according to the

   8 7 * number of actions per unit

   8 8 

   8 9 Sets

   9 0    a possible actions for each unit 'a'

   9 1       /q1*q4/

   9 2    s enumeration of strategies for each portfolio n^a /s1*s4/

   9 3    k index of binary digits - b1 LSB - log2(a) - /w1*w4/

   9 4 

   9 5 * For each portfolio the full list of potential strategies must be

   9 6 * listed. Each strategy must specify one and only one action for each

   9 7 * strategic unit

   9 8 

   9 9    sl(p,s,u,a) list of allowed strategies for each portfolio

  1 0 0    ps(p,s) list of strategies defined for each portfolio
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  1 0 1    us(u) list of strategic generators

  1 0 2    un(u) list of non-strategic generators;

  1 0 3 

  1 0 4 * Use this equation when portfolio p has only 1 unit

  1 0 5    sl(p,s,u,a)$(num_units(p)=1) = yes$(ord(s)=ord(a))*owns(p,u) ;

  1 0 6 

  1 0 7 * The following equation only works when portfolio p has exactly 2 units

  1 0 8    sl(p,s,u,a)$(num_units(p)=2)

  1 0 9            = yes$((mod(ord(s)-1,4)=(ord(a)-1))*owns(p,u)*(mod(ord(u),2)=1)) +

  1 1 0              yes$((mod(trunc((ord(s)-1)/4),4)=(ord(a)-1))*owns(p,u)*(mod(ord(»

      u),2)=0)) ;

  1 1 1 

  1 1 2    ps(p,s) = yes$(sum((u,a),sl(p,s,u,a))) ;

  1 1 3    us(u) = yes$(sum(p,owns(p,u))) ;

  1 1 4    un(u) = yes$(not us(u));

  1 1 5    alias(p,cp) ;

  1 1 6    alias(s,cs) ;

  1 1 7 

  1 1 8 

  1 1 9 Parameters

  1 2 0    B i g M a big number /999999/

  1 2 1    w 0 additive offset for constant

  1 2 2    w(k) conversion factor from binary to production

  1 2 3    y(a,k) mapping from unit action to share of output ;

  1 2 4 

  1 2 5    y(a,k) = mod(trunc((ord(a)-1)/power(2,ord(k)-1)),2) ;

  1 2 6 

  1 2 7    w0 = power(2,-card(k));

  1 2 8    w(k) = power(2,-(card(k)-ord(k)+1)) ;

  1 2 9 

  1 3 0 

  1 3 1 Table CT(n, l) transpose of the incidence matrix 'all data are logged and in »

      csv format'

  1 3 2 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20

  1 3 3 

  1 3 4 $ondelim

  1 3 5 $include matrices_14.csv

  1 3 6 $offdelim

  1 3 7 

  1 3 8 Variables

  1 3 9    social_cost

  1 4 0    Fl0(l,ss)

  1 4 1    Fl0c(l,ss)

  1 4 2    theta0(n,ss)

  1 4 3    theta0c(n,ss)

  1 4 4    Fl(cp,cs,l,ss)

  1 4 5    Flc(cp,cs,l,ss)

  1 4 6    theta(cp,cs,n,ss)

  1 4 7    thetac(cp,cs,n,ss)

  1 4 8    pi0(p,ss) profit of portfolio p

  1 4 9    pi(cp,cs,p,ss) profit of portfolio p in case (cp cs)

  1 5 0    ;

  1 5 1 Free variable

  1 5 2    rho0(n,ss)

  1 5 3    delta0(n,ss)

  1 5 4    rho(cp,cs,n,ss)

  1 5 5    delta(cp,cs,n,ss)

  1 5 6    ;

  1 5 7 Positive Variables

  1 5 8    g0(u,ss)

  1 5 9    gh0(u,ss)
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  1 6 0    z0(u,k,ss)

  1 6 1    g(cp,cs,u,ss)

  1 6 2    gh(cp,cs,u,ss)

  1 6 3    z(cp,cs,u,k,ss)

  1 6 4 

  1 6 5    lambdadown0(l,ss)

  1 6 6    mudown0(u,ss)

  1 6 7    betadown0(l,ss)

  1 6 8    alphadown0(l,ss)

  1 6 9    epsilondown0(l,ss)

  1 7 0    lambdaup0(l,ss)

  1 7 1    muup0(u,ss)

  1 7 2    betaup0(l,ss)

  1 7 3    alphaup0(l,ss)

  1 7 4    epsilonup0(l,ss)

  1 7 5    lambdadown(cp,cs,l,ss)

  1 7 6    mudown(cp,cs,u,ss)

  1 7 7    betadown(cp,cs,l,ss)

  1 7 8    alphadown(cp,cs,l,ss)

  1 7 9    epsilondown(cp,cs,l,ss)

  1 8 0    lambdaup(cp,cs,l,ss)

  1 8 1    muup(cp,cs,u,ss)

  1 8 2    betaup(cp,cs,l,ss)

  1 8 3    alphaup(cp,cs,l,ss)

  1 8 4    epsilonup(cp,cs,l,ss)

  1 8 5    ;

  1 8 6 Binary Variables

  1 8 7    nl(l,ss)

  1 8 8    x0(u,k,ss)

  1 8 9    x(cp,cs,u,k,ss)

  1 9 0    b_lambdadown0(l,ss)

  1 9 1    b_mudown0(u,ss)

  1 9 2    b_betadown0(l,ss)

  1 9 3    b_alphadown0(l,ss)

  1 9 4    b_epsilondown0(l,ss)

  1 9 5    b_lambdaup0(l,ss)

  1 9 6    b_muup0(u,ss)

  1 9 7    b_betaup0(l,ss)

  1 9 8    b_alphaup0(l,ss)

  1 9 9    b_epsilonup0(l,ss)

  2 0 0    b_lambdadown(cp,cs,l,ss)

  2 0 1    b_mudown(cp,cs,u,ss)

  2 0 2    b_betadown(cp,cs,l,ss)

  2 0 3    b_alphadown(cp,cs,l,ss)

  2 0 4    b_epsilondown(cp,cs,l,ss)

  2 0 5    b_lambdaup(cp,cs,l,ss)

  2 0 6    b_muup(cp,cs,u,ss)

  2 0 7    b_betaup(cp,cs,l,ss)

  2 0 8    b_alphaup(cp,cs,l,ss)

  2 0 9    b_epsilonup(cp,cs,l,ss)

  2 1 0    ;

  2 1 1 

  2 1 2 *Objective function - social cost

  2 1 3 

  2 1 4 Equations

  2 1 5    obj

  2 1 6 ;

  2 1 7 

  2 1 8 obj ..               social_cost =e= (sum{ss,prob(ss)*sum(u,cost(u)*g0(u,ss))»

      }+sum{(l,ss),cl(l,ss)*(1-nl(l,ss))}) ;         ;

  2 1 9 
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  2 2 0 *****************************************************************************»

      *****************************************************************

  2 2 1 *Optimal dispatch for the candidate WNE

  2 2 2 *****************************************************************************»

      *****************************************************************

  2 2 3 

  2 2 4 Equations

  2 2 5 

  2 2 6    e01_0(u,ss)   volume of capacity that its offer to the market

  2 2 7    e02_0(p,ss)   profit of a portafolio

  2 2 8    eA_0(u,k,ss)  linearization of equation gh0

  2 2 9    eB_0(u,k,ss)  linearization of equation gh0

  2 3 0    eC_0(u,k,ss)  linearization of equation gh0

  2 3 1    eD_0(u,k,ss)  linearization of equation gh0

  2 3 2 ;

  2 3 3 e01_0(u,ss)   ..      gh0(u,ss) =e= (w0 + sum(k,w(k)*x0(u,k,ss)))*cap(u,ss);

  2 3 4 e02_0(p,ss)   ..      pi0(p,ss) =e= sum(u$owns(p,u),(muup0(u,ss)*w0 + sum(k,w»

      (k)*z0(u,k,ss)))*cap(u,ss));

  2 3 5 eA_0(us,k,ss) ..      z0(us,k,ss)-muup0(us,ss) =l= BigM*(1-x0(us,k,ss));

  2 3 6 eB_0(us,k,ss) ..      z0(us,k,ss)-muup0(us,ss) =g= -BigM*(1-x0(us,k,ss));

  2 3 7 eC_0(us,k,ss) ..      z0(us,k,ss) =l= BigM*x0(us,k,ss);

  2 3 8 eD_0(u,k,ss)$un(u) .. x0(u,k,ss) =e= 1;

  2 3 9 

  2 4 0 * KKT conditions

  2 4 1 *  Primal

  2 4 2 *    DCOPF problem with optimal transmission switching

  2 4 3 

  2 4 4 Equations

  2 4 5 

  2 4 6    e2_0(u,ss)  maximun generation

  2 4 7    e5_0(l,ss)  maximun power flow across line limit

  2 4 8    e6_0(l,ss)  minimun power flow across line limit

  2 4 9    e7_0(n,ss)  power balance at each node

  2 5 0    e8_0(l,ss)  kirchhoff's laws

  2 5 1    e9_0(l,ss)  kirchhoff's laws

  2 5 2 

  2 5 3 ;

  2 5 4 e2_0(u,ss) ..         g0(u,ss)=l= gh0(u,ss);

  2 5 5 e5_0(l,ss) ..         Fl0(l,ss) =l= F(l,ss)*nl(l,ss);

  2 5 6 e6_0(l,ss) ..         Fl0(l,ss) =g= -F(l,ss)*nl(l,ss);

  2 5 7 e7_0(n,ss) ..         sum(l, Fl0(l,ss)*C(l,n))+(sum(u$nd(n,u),g0(u,ss))-D(n,s»

      s))=e=0;

  2 5 8 e8_0(l,ss) ..         sum{n, B(l,ss)*C(l,n)*theta0(n,ss)}- Fl0(l,ss)+(1-nl(l,»

      ss))*BigM =g= 0;

  2 5 9 e9_0(l,ss) ..         sum{n, B(l,ss)*C(l,n)*theta0(n,ss)}- Fl0(l,ss)-(1-nl(l,»

      ss))*BigM =l= 0;

  2 6 0 

  2 6 1 *    DCOPF optimal transmission switching with contingency analysis

  2 6 2 

  2 6 3 Equations

  2 6 4 

  2 6 5    e12_0(l,ss) maximun power flow across line limit for contingency c

  2 6 6    e13_0(l,ss) minimun power flow across line limit for contingency c

  2 6 7    e14_0(n,ss) power balance at each node for contingency c

  2 6 8    e15_0(l,ss) kirchhoff's laws for contingency c

  2 6 9    e16_0(l,ss) kirchhoff's laws for contingency c

  2 7 0 ;

  2 7 1 e12_0(l,ss) ..        Fl0c(l,ss) =l= Fc(l,ss)*nl(l,ss)*nc(l,ss);

  2 7 2 e13_0(l,ss) ..        Fl0c(l,ss) =g= -Fc(l,ss)*nl(l,ss)*nc(l,ss);

  2 7 3 e14_0(n,ss) ..        sum(l, Fl0c(l,ss)*C(l,n))+(sum(u$nd(n,u),g0(u,ss))-D(n,»

      ss))=e=0;
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  2 7 4 e15_0(l,ss) ..        sum{n, B(l,ss)*C(l,n)*theta0c(n,ss)}- Fl0c(l,ss)+(2-nl(»

      l,ss)-nc(l,ss))*BigM =g= 0;

  2 7 5 e16_0(l,ss) ..        sum{n, B(l,ss)*C(l,n)*theta0c(n,ss)}- Fl0c(l,ss)-(2-nl(»

      l,ss)-nc(l,ss))*BigM =l= 0;

  2 7 6 

  2 7 7 *  Stationary conditions

  2 7 8 

  2 7 9 Equations

  2 8 0 

  2 8 1    e17_0(u,ss) derivate of Lagrangian respect to the generation of each unit

  2 8 2    e18_0(n,ss) derivate of Lagrangian respect to the voltage angle of each no»

      de

  2 8 3    e19_0(l,ss) derivate of Lagrangian respect to the power flow of each line

  2 8 4    e20_0(n,ss) derivate of Lagrangian respect to the voltage angle of each no»

      de during contingency c

  2 8 5    e21_0(l,ss) derivate of Lagrangian respect to the power flow of each line »

      during contingency c

  2 8 6 ;

  2 8 7 e17_0(u,ss) ..        -cost(u)+sum(n, rho0(n,ss)*CG(u,n))-mudown0(u,ss)+muup0»

      (u,ss)+sum(n, delta0(n,ss)*CG(u,n))=e=0;

  2 8 8 e18_0(n,ss) ..        sum{l, CT(n,l)*betadown0(l,ss)*B(l,ss)}-sum{l, CT(n,l)*»

      betaup0(l,ss)*B(l,ss)}=e=0;

  2 8 9 e19_0(l,ss) ..        sum(n, rho0(n,ss)*C(l,n))-lambdadown0(l,ss)+lambdaup0(l»

      ,ss)+betadown0(l,ss)-betaup0(l,ss)=e=0;

  2 9 0 e20_0(n,ss) ..        sum{l, CT(n,l)*epsilondown0(l,ss)*B(l,ss)}-sum{l, CT(n,»

      l)*epsilonup0(l,ss)*B(l,ss)}=e=0;

  2 9 1 e21_0(l,ss) ..        sum(n, delta0(n,ss)*C(l,n))-alphadown0(l,ss)+alphaup0(l»

      ,ss)+epsilondown0(l,ss)-epsilonup0(l,ss)=e=0;

  2 9 2 

  2 9 3 *  Complementary slackness conditions

  2 9 4 *  Reformulating as a Mix Integer Linear Programming Problem (MILP)

  2 9 5 

  2 9 6 Equations

  2 9 7 

  2 9 8    e36_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP

  2 9 9    e37_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 0    e38_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 1    e39_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 2    e40_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 3    e41_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 4    e42_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 5    e43_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP

  3 0 6    e44_0(u,ss) Lower boundary of the capacity constraints on each generating »

      units as MILP

  3 0 7    e45_0(u,ss) Lower boundary of the capacity constraints on each generating »

      units as MILP

  3 0 8    e46_0(u,ss) Lower boundary of the capacity constraints on each generating »

      units as MILP

  3 0 9    e47_0(u,ss) Lower boundary of the capacity constraints on each generating »

      units as MILP

  3 1 0    e48_0(u,ss) Upper boundary of the capacity constraints on each generating »

      units as MILP

  3 1 1    e49_0(u,ss) Upper boundary of the capacity constraints on each generating »
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      units as MILP

  3 1 2    e50_0(u,ss) Upper boundary of the capacity constraints on each generating »

      units as MILP

  3 1 3    e51_0(u,ss) Upper boundary of the capacity constraints on each generating »

      units as MILP

  3 1 4    e52_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  3 1 5    e53_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  3 1 6    e54_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  3 1 7    e55_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  3 1 8    e56_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  3 1 9    e57_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  3 2 0    e58_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  3 2 1    e59_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  3 2 2    e68_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 3    e69_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 4    e70_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 5    e71_0(l,ss) Lower boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 6    e72_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 7    e73_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 8    e74_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 2 9    e75_0(l,ss) Upper boundary of the capacity constraints on transmission lin»

      es as MILP for contingency c

  3 3 0    e76_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 1    e77_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 2    e78_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 3    e79_0(l,ss) Lower boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 4    e80_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 5    e81_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 6    e82_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 7    e83_0(l,ss) Upper boundary of constraints on kirchhoff's laws as MILP for »

      contingency c

  3 3 8    ;

  3 3 9 

  3 4 0 e36_0(l,ss) ..        -bigM*(1-b_lambdadown0(l,ss))=l= (-F(l,ss)*nl(l,ss)-Fl0»

      (l,ss));

  3 4 1 e37_0(l,ss) ..        (-F(l,ss)*nl(l,ss)-Fl0(l,ss))=l= bigM*(1-b_lambdadown0(»

      l,ss));

  3 4 2 e38_0(l,ss) ..        -bigM*(b_lambdadown0(l,ss))=l=lambdadown0(l,ss);

  3 4 3 e39_0(l,ss) ..        lambdadown0(l,ss)=l=bigM*(b_lambdadown0(l,ss));

  3 4 4 e40_0(l,ss) ..        -bigM*(1-b_lambdaup0(l,ss))=l=(Fl0(l,ss)-F(l,ss)*nl(l,s»

      s));

  3 4 5 e41_0(l,ss) ..        (Fl0(l,ss)-F(l,ss)*nl(l,ss))=l= bigM*(1-b_lambdaup0(l,s»

      s));

  3 4 6 e42_0(l,ss) ..        -bigM*(b_lambdaup0(l,ss))=l=lambdaup0(l,ss);

  3 4 7 e43_0(l,ss) ..        lambdaup0(l,ss)=l=bigM*(b_lambdaup0(l,ss));

  3 4 8 

  3 4 9 e44_0(u,ss) ..        -bigM*(1-b_mudown0(u,ss))=l= (-g0(u,ss));
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  3 5 0 e45_0(u,ss) ..        (-g0(u,ss))=l= bigM*(1-b_mudown0(u,ss));

  3 5 1 e46_0(u,ss) ..        -bigM*(b_mudown0(u,ss))=l=mudown0(u,ss);

  3 5 2 e47_0(u,ss) ..        mudown0(u,ss)=l= bigM*(b_mudown0(u,ss));

  3 5 3 e48_0(u,ss) ..        -bigM*(1-b_muup0(u,ss))=l=(g0(u,ss)-gh0(u,ss));

  3 5 4 e49_0(u,ss) ..        (g0(u,ss)-gh0(u,ss))=l= bigM*(1-b_muup0(u,ss));

  3 5 5 e50_0(u,ss) ..        -bigM*(b_muup0(u,ss))=l=muup0(u,ss);

  3 5 6 e51_0(u,ss) ..        muup0(u,ss)=l=bigM*(b_muup0(u,ss));

  3 5 7 

  3 5 8 e52_0(l,ss) ..        -bigM*(1-b_betadown0(l,ss))=l= sum{n,(-B(l,ss))*C(l,n)*»

      theta0(n,ss)}+ Fl0(l,ss)-(1-nl(l,ss))*BigM;

  3 5 9 e53_0(l,ss) ..        sum{n,(-B(l,ss))*C(l,n)*theta0(n,ss)}+ Fl0(l,ss)-(1-nl(»

      l,ss))*BigM =l= bigM*(1-b_betadown0(l,ss));

  3 6 0 e54_0(l,ss) ..        -bigM*(b_betadown0(l,ss))=l=betadown0(l,ss);

  3 6 1 e55_0(l,ss) ..        betadown0(l,ss)=l=bigM*(b_betadown0(l,ss));

  3 6 2 e56_0(l,ss) ..        -bigM*(1-b_betaup0(l,ss))=l= sum{n,B(l,ss)*C(l,n)*theta»

      0(n,ss)}- Fl0(l,ss)-(1-nl(l,ss))*BigM;

  3 6 3 e57_0(l,ss) ..        sum{n,B(l,ss)*C(l,n)*theta0(n,ss)}- Fl0(l,ss)-(1-nl(l,s»

      s))*BigM =l= bigM*(1-b_betaup0(l,ss));

  3 6 4 e58_0(l,ss) ..        -bigM*(b_betaup0(l,ss))=l=betaup0(l,ss);

  3 6 5 e59_0(l,ss) ..        betaup0(l,ss)=l=bigM*(b_betaup0(l,ss));

  3 6 6 

  3 6 7 e68_0(l,ss) ..        -bigM*(1-b_alphadown0(l,ss))=l= (-Fc(l,ss)*nl(l,ss)*nc(»

      l,ss)-Fl0c(l,ss));

  3 6 8 e69_0(l,ss) ..        (-Fc(l,ss)*nl(l,ss)*nc(l,ss)-Fl0c(l,ss))=l= bigM*(1-b_a»

      lphadown0(l,ss));

  3 6 9 e70_0(l,ss) ..        -bigM*(b_alphadown0(l,ss))=l=alphadown0(l,ss);

  3 7 0 e71_0(l,ss) ..        alphadown0(l,ss)=l=bigM*(b_alphadown0(l,ss));

  3 7 1 e72_0(l,ss) ..        -bigM*(1-b_alphaup0(l,ss))=l=(Fl0c(l,ss)-Fc(l,ss)*nl(l,»

      ss)*nc(l,ss));

  3 7 2 e73_0(l,ss) ..        (Fl0c(l,ss)-Fc(l,ss)*nl(l,ss)*nc(l,ss))=l= bigM*(1-b_al»

      phaup0(l,ss));

  3 7 3 e74_0(l,ss) ..        -bigM*(b_alphaup0(l,ss))=l=alphaup0(l,ss);

  3 7 4 e75_0(l,ss) ..        alphaup0(l,ss)=l=bigM*(b_alphaup0(l,ss));

  3 7 5 

  3 7 6 e76_0(l,ss) ..        -bigM*(1-b_epsilondown0(l,ss))=l= sum{n,(-B(l,ss))*C(l,»

      n)*theta0c(n,ss)}+ Fl0c(l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM ;

  3 7 7 e77_0(l,ss) ..        sum{n,(-B(l,ss))*C(l,n)*theta0c(n,ss)}+ Fl0c(l,ss)-(2-n»

      l(l,ss)-nc(l,ss))*BigM =l= bigM*(1-b_epsilondown0(l,ss));

  3 7 8 e78_0(l,ss) ..        -bigM*(b_epsilondown0(l,ss))=l=epsilondown0(l,ss);

  3 7 9 e79_0(l,ss) ..        epsilondown0(l,ss)=l=bigM*(b_epsilondown0(l,ss));

  3 8 0 e80_0(l,ss) ..        -bigM*(1-b_epsilonup0(l,ss))=l= sum{n,B(l,ss)*C(l,n)*th»

      eta0c(n,ss)}- Fl0c(l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM;

  3 8 1 e81_0(l,ss) ..        sum{n,B(l,ss)*C(l,n)*theta0c(n,ss)}- Fl0c(l,ss)-(2-nl(l»

      ,ss)-nc(l,ss))*BigM =l= bigM*(1-b_epsilonup0(l,ss));

  3 8 2 e82_0(l,ss) ..        -bigM*(b_epsilonup0(l,ss))=l=epsilonup0(l,ss);

  3 8 3 e83_0(l,ss) ..        epsilonup0(l,ss)=l= bigM*(b_epsilonup0(l,ss));

  3 8 4 

  3 8 5 *****************************************************************************»

      *****************************************************************

  3 8 6 *Optimal dispatch for the alternative case p s

  3 8 7 *****************************************************************************»

      *****************************************************************

  3 8 8 

  3 8 9 Equations

  3 9 0 

  3 9 1    e01(cp,cs,u,ss)   volume of capacity that its offer to the market

  3 9 2    e02(cp,cs,p,ss)   profit of a portafolio

  3 9 3    eA(cp,cs,u,k,ss)  linearization of equation gh0

  3 9 4    eB(cp,cs,u,k,ss)  linearization of equation gh0

  3 9 5    eC(cp,cs,u,k,ss)  linearization of equation gh0

  3 9 6    eD(cp,cs,u,k,ss)  linearization of equation gh0
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  3 9 7 ;

  3 9 8 e01(cp,cs,u,ss)   ..      gh(cp,cs,u,ss) =e= (w0 + sum(k,w(k)*x(cp,cs,u,k,ss)»

      ))*cap(u,ss);

  3 9 9 e02(cp,cs,p,ss)   ..      pi(cp,cs,p,ss) =e= sum(u$owns(p,u),(muup(cp,cs,u,ss»

      )*w0 + sum(k,w(k)*z(cp,cs,u,k,ss)))*cap(u,ss));

  4 0 0 eA(cp,cs,us,k,ss) ..      z(cp,cs,us,k,ss)-muup(cp,cs,us,ss) =l= BigM*(1-x(cp»

      ,cs,us,k,ss));

  4 0 1 eB(cp,cs,us,k,ss) ..      z(cp,cs,us,k,ss) =l= BigM*x(cp,cs,us,k,ss);

  4 0 2 eC(cp,cs,us,k,ss) ..      z(cp,cs,us,k,ss)-muup(cp,cs,us,ss) =g= -BigM*(1-x(c»

      p,cs,us,k,ss));

  4 0 3 eD(cp,cs,u,k,ss)  ..      x(cp,cs,u,k,ss) =e= x0(u,k,ss)$(not owns(cp,u)) + s»

      um(a,y(a,k)$sl(cp,cs,u,a))$owns(cp,u);

  4 0 4 

  4 0 5 * KKT conditions

  4 0 6 *  Primal

  4 0 7 *    DCOPF problem with optimal transmission switching

  4 0 8 

  4 0 9 Equations

  4 1 0 

  4 1 1    e2(cp,cs,u,ss)  maximun generation

  4 1 2    e5(cp,cs,l,ss)  maximun power flow across line limit

  4 1 3    e6(cp,cs,l,ss)  minimun power flow across line limit

  4 1 4    e7(cp,cs,n,ss)  power balance at each node

  4 1 5    e8(cp,cs,l,ss)  kirchhoff's laws

  4 1 6    e9(cp,cs,l,ss)  kirchhoff's laws

  4 1 7 ;

  4 1 8 e2(cp,cs,u,ss) ..         g(cp,cs,u,ss)=l= gh(cp,cs,u,ss) ;

  4 1 9 e5(cp,cs,l,ss) ..         Fl(cp,cs,l,ss) =l= F(l,ss)*nl(l,ss);

  4 2 0 e6(cp,cs,l,ss) ..         Fl(cp,cs,l,ss) =g= -F(l,ss)*nl(l,ss);

  4 2 1 e7(cp,cs,n,ss) ..         sum(l, Fl(cp,cs,l,ss)*C(l,n))+(sum(u$nd(n,u),g(cp,c»

      s,u,ss))-D(n,ss))=e=0;

  4 2 2 e8(cp,cs,l,ss) ..         sum{n, B(l,ss)*C(l,n)*theta(cp,cs,n,ss)}- Fl(cp,cs,»

      l,ss)+(1-nl(l,ss))*BigM =g= 0;

  4 2 3 e9(cp,cs,l,ss) ..         sum{n, B(l,ss)*C(l,n)*theta(cp,cs,n,ss)}- Fl(cp,cs,»

      l,ss)-(1-nl(l,ss))*BigM =l= 0;

  4 2 4 

  4 2 5 *    DCOPF optimal transmission switching with contingency analysis

  4 2 6 

  4 2 7 Equations

  4 2 8 

  4 2 9    e12(cp,cs,l,ss) maximun power flow across line limit for contingency c

  4 3 0    e13(cp,cs,l,ss) minimun power flow across line limit for contingency c

  4 3 1    e14(cp,cs,n,ss) power balance at each node for contingency c

  4 3 2    e15(cp,cs,l,ss) kirchhoff's laws for contingency c

  4 3 3    e16(cp,cs,l,ss) kirchhoff's laws for contingency c

  4 3 4 ;

  4 3 5 e12(cp,cs,l,ss) ..        Flc(cp,cs,l,ss) =l= Fc(l,ss)*nl(l,ss)*nc(l,ss);

  4 3 6 e13(cp,cs,l,ss) ..        Flc(cp,cs,l,ss) =g= -Fc(l,ss)*nl(l,ss)*nc(l,ss);

  4 3 7 e14(cp,cs,n,ss) ..        sum(l, Flc(cp,cs,l,ss)*C(l,n))+(sum(u$nd(n,u),g(cp,»

      cs,u,ss))-D(n,ss))=e=0;

  4 3 8 e15(cp,cs,l,ss) ..        sum{n, B(l,ss)*C(l,n)*thetac(cp,cs,n,ss)}- Flc(cp,c»

      s,l,ss)+(2-nl(l,ss)-nc(l,ss))*BigM =g= 0;

  4 3 9 e16(cp,cs,l,ss) ..        sum{n, B(l,ss)*C(l,n)*thetac(cp,cs,n,ss)}- Flc(cp,c»

      s,l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM =l= 0;

  4 4 0 

  4 4 1 *  Stationary conditions

  4 4 2 

  4 4 3 Equations

  4 4 4 

  4 4 5    e17(cp,cs,u,ss) derivate of Lagrangian respect to the generation of each u»

      nit



C:\Users\Maria\Desktop\appendix gams\14_1.gms  25 September 2012 18:29:09 Page 10

  4 4 6    e18(cp,cs,n,ss) derivate of Lagrangian respect to the voltage angle of eac»

      h node

  4 4 7    e19(cp,cs,l,ss) derivate of Lagrangian respect to the power flow of each l»

      ine

  4 4 8    e20(cp,cs,n,ss) derivate of Lagrangian respect to the voltage angle of eac»

      h node during contingency c

  4 4 9    e21(cp,cs,l,ss) derivate of Lagrangian respect to the power flow of each l»

      ine during contingency c

  4 5 0 ;

  4 5 1 e17(cp,cs,u,ss) ..        -cost(u)+sum(n, rho(cp,cs,n,ss)*CG(u,n))-mudown(cp,»

      cs,u,ss)+muup(cp,cs,u,ss)+sum(n, delta(cp,cs,n,ss)*CG(u,n))=e=0;

  4 5 2 e18(cp,cs,n,ss) ..        sum{l, CT(n,l)*betadown(cp,cs,l,ss)*B(l,ss)}-sum{l,»

       CT(n,l)*betaup(cp,cs,l,ss)*B(l,ss)}=e=0;

  4 5 3 e19(cp,cs,l,ss) ..        sum(n, rho(cp,cs,n,ss)*C(l,n))-lambdadown(cp,cs,l,s»

      s)+lambdaup(cp,cs,l,ss)+betadown(cp,cs,l,ss)-betaup(cp,cs,l,ss)=e=0;

  4 5 4 e20(cp,cs,n,ss) ..        sum{l, CT(n,l)*epsilondown(cp,cs,l,ss)*B(l,ss)}-sum»

      {l, CT(n,l)*epsilonup(cp,cs,l,ss)*B(l,ss)}=e=0;

  4 5 5 e21(cp,cs,l,ss) ..        sum(n, delta(cp,cs,n,ss)*C(l,n))-alphadown(cp,cs,l,»

      ss)+alphaup(cp,cs,l,ss)+epsilondown(cp,cs,l,ss)-epsilonup(cp,cs,l,ss)=e=0;

  4 5 6 

  4 5 7 *  Complementary slackness conditions

  4 5 8 *  Reformulating as a Mix Integer Linear Programming Problem (MILP)

  4 5 9 

  4 6 0 Equations

  4 6 1 

  4 6 2    e36(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 3    e37(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 4    e38(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 5    e39(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 6    e40(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 7    e41(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 8    e42(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP

  4 6 9    e43(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP

  4 7 0    e44(cp,cs,u,ss) Lower boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 1    e45(cp,cs,u,ss) Lower boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 2    e46(cp,cs,u,ss) Lower boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 3    e47(cp,cs,u,ss) Lower boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 4    e48(cp,cs,u,ss) Upper boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 5    e49(cp,cs,u,ss) Upper boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 6    e50(cp,cs,u,ss) Upper boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 7    e51(cp,cs,u,ss) Upper boundary of the capacity constraints on each generat»

      ing units as MILP

  4 7 8    e52(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  4 7 9    e53(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  4 8 0    e54(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP

  4 8 1    e55(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP
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  4 8 2    e56(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  4 8 3    e57(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  4 8 4    e58(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  4 8 5    e59(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP

  4 8 6    e68(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 8 7    e69(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 8 8    e70(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 8 9    e71(cp,cs,l,ss) Lower boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 9 0    e72(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 9 1    e73(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 9 2    e74(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 9 3    e75(cp,cs,l,ss) Upper boundary of the capacity constraints on transmission»

       lines as MILP for contingency c

  4 9 4    e76(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  4 9 5    e77(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  4 9 6    e78(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  4 9 7    e79(cp,cs,l,ss) Lower boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  4 9 8    e80(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  4 9 9    e81(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  5 0 0    e82(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  5 0 1    e83(cp,cs,l,ss) Upper boundary of constraints on kirchhoff's laws as MILP »

      for contingency c

  5 0 2    ;

  5 0 3 

  5 0 4 e36(cp,cs,l,ss) ..        -bigM*(1-b_lambdadown(cp,cs,l,ss))=l= (-F(l,ss)*nl(»

      l,ss)-Fl(cp,cs,l,ss));

  5 0 5 e37(cp,cs,l,ss) ..        (-F(l,ss)*nl(l,ss)-Fl(cp,cs,l,ss))=l= bigM*(1-b_lam»

      bdadown(cp,cs,l,ss));

  5 0 6 e38(cp,cs,l,ss) ..        -bigM*(b_lambdadown(cp,cs,l,ss))=l=lambdadown(cp,cs»

      ,l,ss);

  5 0 7 e39(cp,cs,l,ss) ..        lambdadown(cp,cs,l,ss)=l=bigM*(b_lambdadown(cp,cs,l»

      ,ss));

  5 0 8 e40(cp,cs,l,ss) ..        -bigM*(1-b_lambdaup(cp,cs,l,ss))=l=(Fl(cp,cs,l,ss)-»

      F(l,ss)*nl(l,ss));

  5 0 9 e41(cp,cs,l,ss) ..        (Fl(cp,cs,l,ss)-F(l,ss)*nl(l,ss))=l= bigM*(1-b_lamb»

      daup(cp,cs,l,ss));

  5 1 0 e42(cp,cs,l,ss) ..        -bigM*(b_lambdaup(cp,cs,l,ss))=l=lambdaup(cp,cs,l,s»

      s);

  5 1 1 e43(cp,cs,l,ss) ..        lambdaup(cp,cs,l,ss)=l=bigM*(b_lambdaup(cp,cs,l,ss)»

      );

  5 1 2 

  5 1 3 e44(cp,cs,u,ss) ..        -bigM*(1-b_mudown(cp,cs,u,ss))=l= (-g(cp,cs,u,ss));

  5 1 4 e45(cp,cs,u,ss) ..        (-g(cp,cs,u,ss))=l= bigM*(1-b_mudown(cp,cs,u,ss));

  5 1 5 e46(cp,cs,u,ss) ..        -bigM*(b_mudown(cp,cs,u,ss))=l=mudown(cp,cs,u,ss);

  5 1 6 e47(cp,cs,u,ss) ..        mudown(cp,cs,u,ss)=l= bigM*(b_mudown(cp,cs,u,ss));

  5 1 7 e48(cp,cs,u,ss) ..        -bigM*(1-b_muup(cp,cs,u,ss))=l=(g(cp,cs,u,ss)-gh(cp»

      ,cs,u,ss));
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  5 1 8 e49(cp,cs,u,ss) ..        (g(cp,cs,u,ss)-gh(cp,cs,u,ss))=l= bigM*(1-b_muup(cp»

      ,cs,u,ss));

  5 1 9 e50(cp,cs,u,ss) ..        -bigM*(b_muup(cp,cs,u,ss))=l=muup(cp,cs,u,ss);

  5 2 0 e51(cp,cs,u,ss) ..        muup(cp,cs,u,ss)=l=bigM*(b_muup(cp,cs,u,ss));

  5 2 1 

  5 2 2 e52(cp,cs,l,ss) ..        -bigM*(1-b_betadown(cp,cs,l,ss))=l= sum{n,(-B(l,ss)»

      )*C(l,n)*theta(cp,cs,n,ss)}+ Fl(cp,cs,l,ss)-(1-nl(l,ss))*BigM;

  5 2 3 e53(cp,cs,l,ss) ..        sum{n,(-B(l,ss))*C(l,n)*theta(cp,cs,n,ss)}+ Fl(cp,c»

      s,l,ss)-(1-nl(l,ss))*BigM =l= bigM*(1-b_betadown(cp,cs,l,ss));

  5 2 4 e54(cp,cs,l,ss) ..        -bigM*(b_betadown(cp,cs,l,ss))=l=betadown(cp,cs,l,s»

      s);

  5 2 5 e55(cp,cs,l,ss) ..        betadown(cp,cs,l,ss)=l=bigM*(b_betadown(cp,cs,l,ss)»

      );

  5 2 6 e56(cp,cs,l,ss) ..        -bigM*(1-b_betaup(cp,cs,l,ss))=l= sum{n,B(l,ss)*C(l»

      ,n)*theta(cp,cs,n,ss)}- Fl(cp,cs,l,ss)-(1-nl(l,ss))*BigM;

  5 2 7 e57(cp,cs,l,ss) ..        sum{n,B(l,ss)*C(l,n)*theta(cp,cs,n,ss)}- Fl(cp,cs,l»

      ,ss)-(1-nl(l,ss))*BigM =l= bigM*(1-b_betaup(cp,cs,l,ss));

  5 2 8 e58(cp,cs,l,ss) ..        -bigM*(b_betaup(cp,cs,l,ss))=l=betaup(cp,cs,l,ss);

  5 2 9 e59(cp,cs,l,ss) ..        betaup(cp,cs,l,ss)=l=bigM*(b_betaup(cp,cs,l,ss));

  5 3 0 e68(cp,cs,l,ss) ..        -bigM*(1-b_alphadown(cp,cs,l,ss))=l= (-Fc(l,ss)*nl(»

      l,ss)*nc(l,ss)-Flc(cp,cs,l,ss));

  5 3 1 e69(cp,cs,l,ss) ..        (-Fc(l,ss)*nl(l,ss)*nc(l,ss)-Flc(cp,cs,l,ss))=l= bi»

      gM*(1-b_alphadown(cp,cs,l,ss));

  5 3 2 e70(cp,cs,l,ss) ..        -bigM*(b_alphadown(cp,cs,l,ss))=l=alphadown(cp,cs,l»

      ,ss);

  5 3 3 e71(cp,cs,l,ss) ..        alphadown(cp,cs,l,ss)=l=bigM*(b_alphadown(cp,cs,l,s»

      s));

  5 3 4 e72(cp,cs,l,ss) ..        -bigM*(1-b_alphaup(cp,cs,l,ss))=l=(Flc(cp,cs,l,ss)-»

      Fc(l,ss)*nl(l,ss)*nc(l,ss));

  5 3 5 e73(cp,cs,l,ss) ..        (Flc(cp,cs,l,ss)-Fc(l,ss)*nl(l,ss)*nc(l,ss))=l= big»

      M*(1-b_alphaup(cp,cs,l,ss));

  5 3 6 e74(cp,cs,l,ss) ..        -bigM*(b_alphaup(cp,cs,l,ss))=l=alphaup(cp,cs,l,ss)»

      ;

  5 3 7 e75(cp,cs,l,ss) ..        alphaup(cp,cs,l,ss)=l=bigM*(b_alphaup(cp,cs,l,ss));

  5 3 8 

  5 3 9 e76(cp,cs,l,ss) ..        -bigM*(1-b_epsilondown(cp,cs,l,ss))=l= sum{n,(-B(l,»

      ss))*C(l,n)*thetac(cp,cs,n,ss)}+ Flc(cp,cs,l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM ;

  5 4 0 e77(cp,cs,l,ss) ..        sum{n,(-B(l,ss))*C(l,n)*thetac(cp,cs,n,ss)}+ Flc(cp»

      ,cs,l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM =l= bigM*(1-b_epsilondown(cp,cs,l,ss));

  5 4 1 e78(cp,cs,l,ss) ..        -bigM*(b_epsilondown(cp,cs,l,ss))=l=epsilondown(cp,»

      cs,l,ss);

  5 4 2 e79(cp,cs,l,ss) ..        epsilondown(cp,cs,l,ss)=l=bigM*(b_epsilondown(cp,cs»

      ,l,ss));

  5 4 3 e80(cp,cs,l,ss) ..        -bigM*(1-b_epsilonup(cp,cs,l,ss))=l= sum{n,B(l,ss)*»

      C(l,n)*thetac(cp,cs,n,ss)}- Flc(cp,cs,l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM;

  5 4 4 e81(cp,cs,l,ss) ..        sum{n,B(l,ss)*C(l,n)*thetac(cp,cs,n,ss)}- Flc(cp,cs»

      ,l,ss)-(2-nl(l,ss)-nc(l,ss))*BigM =l= bigM*(1-b_epsilonup(cp,cs,l,ss));

  5 4 5 e82(cp,cs,l,ss) ..        -bigM*(b_epsilonup(cp,cs,l,ss))=l=epsilonup(cp,cs,l»

      ,ss);

  5 4 6 e83(cp,cs,l,ss) ..        epsilonup(cp,cs,l,ss)=l= bigM*(b_epsilonup(cp,cs,l,»

      ss));

  5 4 7 *

  5 4 8 * These equations ensure that the selected strategy combination is a NE

  5 4 9 *

  5 5 0 Equation

  5 5 1    epi(cp,cs,ss)

  5 5 2 

  5 5 3 ;

  5 5 4 epi(cp,cs,ss)   ..        pi0(cp,ss)=g=pi(cp,cs,cp,ss);

  5 5 5 

  5 5 6 Option rmip=cplex;
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  5 5 7 

  5 5 8 Model LinearNE /all/ ;

  5 5 9 

  5 6 0 Solve LinearNE using rmip maximizing social_cost ;

  5 6 1 

  5 6 2 
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